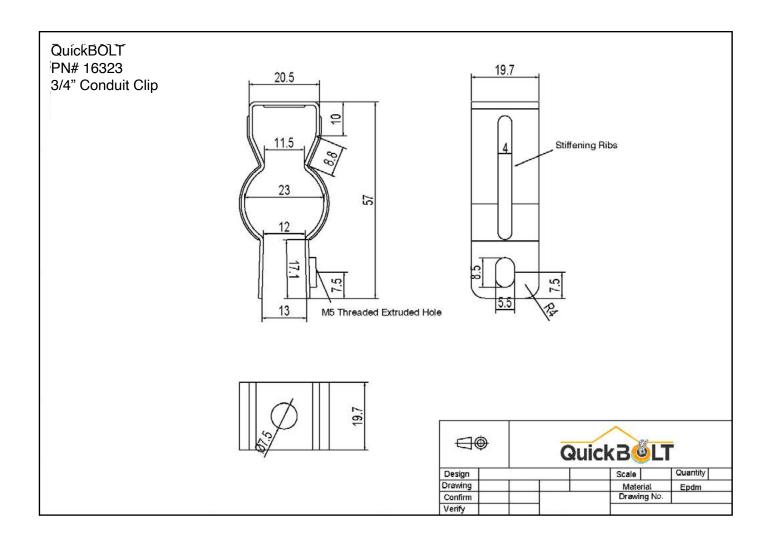
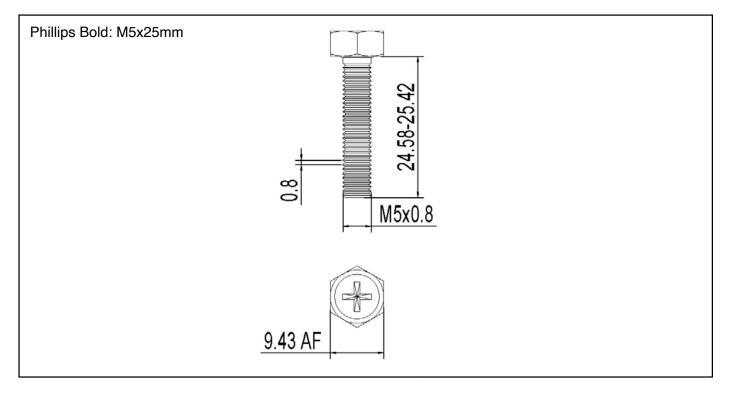
16323, 16325, 16326

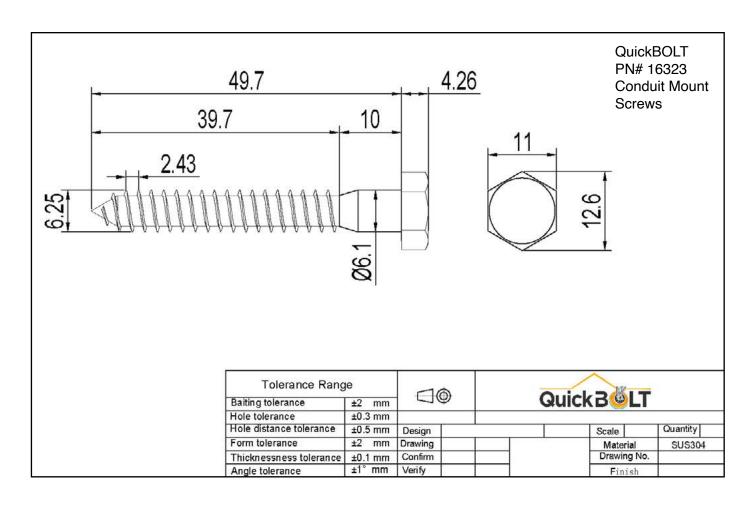
CONDUIT HANGER CLIP WITH CONDUIT PUCK FOR ASPHALT SHINGLE ROOFS

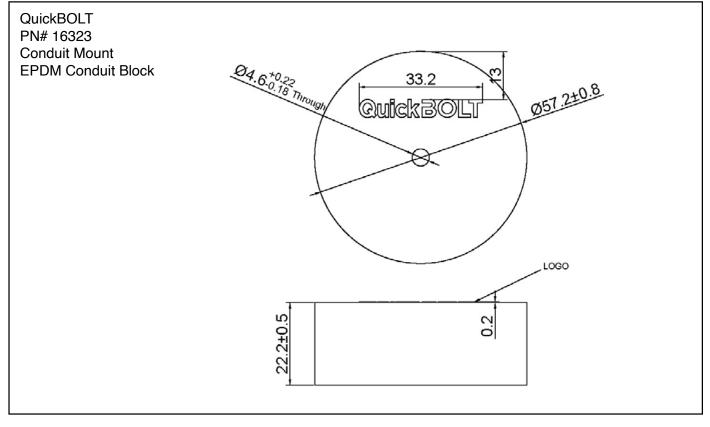
A DIVISION OF QUICKSCREWS INTERNATIONAL CORP

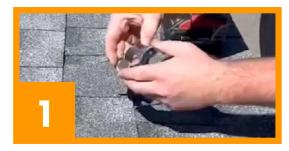
TABLE OF CONTENTS

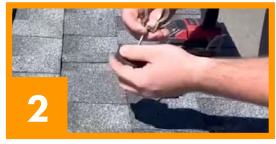

3	SPEC SHEET QTY & MEASUREMENT INFORMATION
6	INSTALLATION INSTRUCTIONS STEP-BY-STEP-INSTALLATION GUIDE
7	BUILDING CODE LETTER REGARDING STAMP DATES
8	ENGINEERING REPORT UPLIFT & LATERAL LOAD TEST
16	UL REPORT


SPEC SHEET


Part #	Box Quantity	Clip Size	QTY
16323	2-1/4" EPDM Conduit Puck W/ ¾" Clip + Screw	3/4"	40/CS
16324	2-1/4" EPDM Conduit Puck W/ 3/4" Clip + Screw	3/4"	10/PK-3PK/CS
16325	Conduit Clip + M5x25mm Hex Bolt	3/4"	500/CS
16326	Conduit Clip + M5x25mm Hex Bolt	3/4"	100/PK-5PK/CS







INSTALL INSTRUCTIONS

RECOMMENDED MATERIALS

- Impact Driver or Drill
- 7/16th"Hex Driver

INSTALLATION INSTRUCTIONS

- 1. Open Conduit Clip slightly
- 2. Place screw through base hole
- 3. Thread screw with Clip into Puck hold. Just enough so it doesn't fall out
- 4. Orient clip to conduit direction
- 5. Use 7/16th screw driver to fasten
- 6. Thread bolt through clip's top hole. Clip hole is threaded

BUILDING CODE LETTER

March 22nd, 2023

To whom this may concern,

QuickBOLT is committed to excellence. The parts tested are durable goods, meaning the material composition and detailed specifications of the parts do not change. Therefore, all stamps are current. Any part tested will have the same results no matter what year the tests are performed. All testing and reports are current and valid with 2022 CBC standards.

SolarRoofHook is the previous name of QuickBOLT. Any test result referencing SolarRoofHook is referring to a QuickBOLT product.

All our parts were tested by a third-party test facility, in possession of a current engineering license for the state where the tests were performed for the following.

- 1. Uplift test
- 2. Downward load test
- 3. Lateral Test Asphalt Mounts, and Metal Mounts only
- 4. ASTM E2440 and ASTM E330 Waterproof Tests QuickBOLT only

The following is an excerpt from:

CALIFORNIA BOARD FOR PROFESSIONAL ENGINEERS AND LAND SURVEYORS guide to Engineering & Land Surveying for City and County Officials
Page 12, Line 27

27. If the license has expired between the time the engineering documents were prepared and the time when the local agency's review is performed, do the documents need to be re-sealed by a licensee with a current license? (B&P Code §§ 6733, 6735.3, 6735.4)

As long as the license was current at the time the engineering documents were prepared, the documents do not need to be re-sealed prior to review by the local agency. However, any changes (updates or modifications) to the documents that are made following the review by the local agency would have to be prepared by a licensed engineer with a current license and those changes would have to be signed and sealed.

We trust the information provided will resolve any request for the test reports submitted to have a stamp from the current year.

Regards,

Rick Gentry Executive Vice President

ENGINEERING REPORT

QUICKSCREWS INTERNATIONAL CORP. TEST REPORT

SCOPE OF WORK

TAS 100(A) TESTING on Part# 16321 EPDM Conduit Mount with Screw

REPORT NUMBER

L2941.03-301-18 R0

TEST DATE

08/31/20

ISSUE DATE

09/14/20

RECORD RETENTION END DATE

08/31/25

PAGES

11

DOCUMENT CONTROL NUMBER

ATI 00479 (07/24/17) RT-R-AMER-Test-2805 © 2017 INTERTEK

Telephone: 469 814 0687 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR QUICKSCREWS INTERNATIONAL CORP.

Report No.: L2941.03-301-18 R0

Date: 09/14/20

REPORT ISSUED TO

QUICKBOLT - A DIVISION OF QUICKSCREWS INTERNATIONAL CORP. 5830 Las Positas Road Livermore, California 94551

SECTION 1

SCOPE

Intertek Building & Construction (B&C) was contracted by Quickscrews Company to perform testing in accordance with TAS 100(A) - 95 testing on their Part# 16321 EPDM Conduit Mount with Screw. Results obtained are tested values and were secured by using the designated test method. Testing was conducted at Intertek B&C test facility in Fresno, California.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

SECTION 2

SUMMARY OF TEST RESULTS

The specimens tested met the performance requirements set forth in the protocols.

Product Type: Solar Mounting Fastener

Series/Model: Part# 16321 EPDM Conduit Mount with Screw

material, product, or service is or has ever been under an Intertek certification program.

SPEC.	TEST PROTOCOL	LEVEL
1	TAS 100(A) -95	110 MPH

2020.09.14 12:14:36 -07'00'

For INTERTEK B&C: COMPLETED BY: Dennis Janzen Technician TITLE: Dennis Ganz SIGNATURE: DATE: 09/14/20 TW:ms

Tyler Westerling, P.E. REVIEWED BY: TITLE: SIGNATURE: DATE:

Operations Manager

This report is for the exclusive use of intertek's Client and is provided pursuant to the agreement between intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Clientin accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the

Version: 07/24/17 Page 2 of 8 RT-R-AMER-Test-2805

Telephone: 469-814-0687 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR QUICKSCREWS INTERNATIONAL CORP.

Report No.: L2941.03-301-18 RO

Date: 09/14/20

SECTION 3

TEST METHOD

The specimens were evaluated in accordance with the following:

Testing Application Standard (TAS) No. 100(A) - 1995, Test Procedure for Wind and Wind Driven Rain Resistance and/or Increased Windspeed Resistance of Soffit Ventilation Strip and Continuous or Intermittent Ventilation System Installed at the Ridge Area

SECTION 4

MATERIAL SOURCE/INSTALLATION

Test specimen were provided by the client. Representative samples of the test specimen will be retained by Intertek B&C for a minimum of five years from the test completion date.

The specimen was installed into an asphalt shingle test buck with lexan viewing window on the underside. Installation of the tested product was performed by Intertek B&C.

COMPONENT	MATERIAL	DESCRIPTION
Part# 16321 EPDM Conduit Mount with Screw	EPDM/Stainless	2-1/4" by 7/8" thick Mount with 1/4" x 2" Stainless steel lag bolt

SECTION 5

EQUIPMENT

Calibrated Wind Generator - Reference calibration report I6737.03-801-44-r0 for calibration results.

SECTION 6

LIST OF OFFICIAL OBSERVERS

NAME	COMPANY	
Dennis Janzen	Intertek B&C	
Tyler Westerling	Intertek B&C	

Version: 07/24/17 Page 3 of 8 RT-R-AMER-Test-2805

Telephone: 469-814-0687 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR QUICKSCREWS INTERNATIONAL CORP.

Report No.: L2941.03-301-18 RO

Date: 09/14/20

SECTION 7

TEST RESULTS

Protocol TAS 100(A) - 95, Wind Driven Rain Resistance

Test Date: 05/04/20

The temperature during testing was 35°C (95°F). The results are tabulated as follows:

Test Specimen test results:

Wind Speed	Gallons Sprayed	Inches Per Hour	Gallons Collected	Notes
35	77.02	10.30	0	15 Minutes
70	75.11	10.04	0	15 Minutes
90	79.89	10.68	0	15 Minutes
110	27.88	10.08	0	5 Minutes
Total	259.9	11.18	0	
1% of total water sprayed	2.59 Gallons		0 Gallons Collected	Pass

General Note: All testing was performed in accordance with the referenced standard.

SECTION 8

CONCLUSIONS

Intertek B&C observed no signs of failure in any area of the test specimens during the test; as such, the test specimens satisfy the requirements of TAS 100(A) - 95.

Version: 07/24/17 Page 4 of 8 RT-R-AMER-Test-2805

Telephone: 469 814 0687 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR QUICKSCREWS INTERNATIONAL CORP.

Report No.: L2941.03-301-18 RO

Date: 09/14/20

SECTION 9

PHOTOGRAPHS

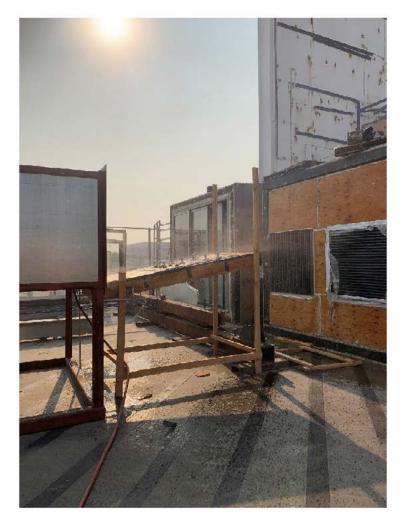


Photo No. 1

Version: 07/24/17 Page 5 of 8 RT-R-AMER-Test-2805

Telephone: 469 814 0687 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR QUICKSCREWS INTERNATIONAL CORP.

Report No.: L2941.03-301-18 R0

Date: 09/14/20

Photo No. 2

Version: 07/24/17 Page 6 of 8 RT-R-AMER-Test-2805

Telephone: 469 814 0687 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR QUICKSCREWS INTERNATIONAL CORP.

Report No.: L2941.03-301-18 R0

Date: 09/14/20

14

Photo 3

Telephone: 469-814-0687 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR QUICKSCREWS INTERNATIONAL CORP.

Report No.: L2941.03-301-18 R0

Date: 09/14/20

SECTION 10

REVISION LOG

REVISION #	DATE	PAGES	REVISION	
0	09/14/20	N/A	Original Report Issue	

Version: 07/24/17 Page 8 of 8 RT-R-AMER-Test-2805

UL REPORTING

03/27/2024

Safety. Science. Transformation."

Mr. Rick Gentry Scame-Parre S P A QuickBOLT 5830 Las Positas Rd Livermore CA, 94551 US

Our Reference: File E537898, Project Number 4791077436; Evaluation of 2 sizes EMT hangers

Subject: Close-Out Letter

Dear Mr. Gentry:

As requested in your March 25th e-mail, the referenced project for evaluation of EMT hangers is being closed at this time with no certification granted.

The project cost has been reduced to 7,080 to cover our work to date.

For the record we used requirements from the standards below for this investigation.

Standard	Title	Edition	Publication or Latest Revision Date
UL 2239	Hardware for the Support of Conduit, Tubing and Cable	2 nd	January 14, 2022
CSA C22.2 No. 18.4-15	Hardware for the Support of Conduit, Tubing and Cable	2 nd	January 14, 2022

All test data is included in this letter report for your reference.

Your business is very important to us and if there is any additional information that we may provide to you about the investigation or UL's other services, please do not hesitate to contact us.

Sincerely, Walter Roeder Staff Engineer Department: 3012CMEL Tel: 847-664-2758

E-mail: walter.roeder@ul.com

Reviewed by: Michael Marchessault Senior Staff Engineer Department: 3012CMEL

ULLLC 333 Pfingsten Road, Northbrook, IL 60062-2096 USA T: 847.272.8800 / F: 847.272.8129 / W: ULcom File E537898 Project 4791077436 Appendix Page 1 of X

METALLIC COATING THICKNESS TEST: (WET LOCATION) Clause: 6.3

METHOD

The thickness of three samples of zinc on the hardware device Cat. Nos. 3/4 clip and 1 clip were measured in accordance with the requirements outlined in the Standard for Safety for Hardware for the Support of Conduit, Tubing and Cable, UL 2239.

RESULTS

Ambient Temperature, C 24.6	Relative Humidity, %	NA Barometric NA Pressure, mBar NA
[\mathbf{x}] The average thickness	of the sample	was less than 0.013 mm (0.0005 in.).
[] The average thickness 0.013 mm (0.0005 in.).	of the sample	was equal to or greater than
[x] The minimum thickness (0.0004 in.).	of the sample	was less than 0.0102 mm
[] The minimum thickness 0.0102 mm (0.0004 in.).	of the sample	was equal to or greater than

[] The thickness of the sample was determined by visual inspection.

File E537898 Project 4791077436 Appendix Page 2 of X

METALLIC COATING THICKNESS TEST (WET LOCATION) (CONT'D): Clause: 6.3

3/4 Clip

Sample Number	Measured Thickness Inside, mm (In)	Average Thickness Inside, mm (In)	Measured Thickness Outside, mm (In)	Average Thickness Outside, mm (In)	
1					
2					
3					

Date	Time, s	Sample No.	Sample Temperature C	Ambient Temperature C	Solution Temperature C
2024/2/23	9:30 am	1-3	24.6	24.6	24.6
,					

Sample	Seconds (S)			Factor (F) (See Table 20 below)			Thickness (T), in. $ (T_n = 10^{-5} \times S \times F) $		Average Thickness, in.	
Number	S_1	S2	S ₃	F ₁	F ₂	F ₃	T ₁	T ₂	T ₃	34442
1	18.91	18.43	19.12	1.033	1.033	1.033	0.00019	0.00019	0.00020	0.00019
2	18.39	18.17	17.26	1.033	1.033	1.033	0.00019	0.00019	0.00018	0.00019
3	18.44	19.25	18.33	1.033	1.033	1.033	0.00019	0.00020	0.00019	0.00019

Validated Software ID No.: 66817

Temperature, degrees C (F)	Thickness factors for zinc coating				
21.1 (70)	0.980				
21.7 (71)	0.990				
22.2 (72)	1.000				
22.8 (73)	1.010				
23.3 (74)	1.015				
23.9 (75)	1.025				
24.4 (76)	1.033				
25.0 (77)	1.042				
25.6 (78)	1.050				
26.1 (79)	1.060				
26.7 (80)	1.070				
27.2 (81)	1.080				
27.8 (82)	1.085				
28.3 (83)	1.095				
28.9 (84)	1.100				
29.4 (85)	1.110				
30.0 (86)	1.120				
30.6 (87)	1.130				
31.1 (88)	1.141				
31.7 (89)	1.150				

File E537898 Project 4791077436 Appendix Page 3 of X

METALLIC COATING THICKNESS TEST (WET LOCATION) (CONT'D):

Clause: 6.3

1 Clip

Sample Number	Measured Thickness Inside, mm (In)	Average Thickness Inside, mm (In)	Measured Thickness Outside, mm (In)	Average Thickness Outside, mm (In)
1				
2				
3),		

Time, s	Sample No.	Sample Temperature C	Ambient Temperature C	Solution Temperature C
9:30 am	1-3	24.6	24.6	24.6
		1		
			Time, s Sample No. Temperature C	Time, s Sample No. Temperature C Temperature C

Sample	Seconds (S)		Factor (F) (See Table 20 below)			Thickness (T), in. $ (T_n = 10^{-5} \times S \times F) $			Average Thickness,	
Number	S ₁	S ₂	S ₃	F ₁	F_2	F ₃	T ₁	T_2	Т3	in.
1	19.42	19.37	20.12	1.033	1.033	1.033	0.00020	0.00020	0.00021	0.00020
2	18.34	18.81	17.68	1.033	1.033	1.033	0.00019	0.00019	0.00018	0.00019
3	18.57	19.22	19.84	1.033	1.033	1.033	0.00019	0.00020	0.00020	0.00020

Validated Software ID No.: 66817

Temperature, degrees C (F)	Thickness factors for zinc coating				
21.1 (70)	0.980				
21.7 (71)	0.990				
22.2 (72)	1.000				
22.8 (73)	1.010				
23.3 (74)	1.015				
23.9 (75)	1.025				
24.4 (76)	1.033				
25.0 (77)	1.042				
25.6 (78)	1.050				
26.1 (79)	1.060				
26.7 (80)	1.070				
27.2 (81)	1.080				
27.8 (82)	1.085				
28.3 (83)	1.095				
28.9 (84)	1.100				
29.4 (85)	1.110				
30.0 (86)	1.120				
30.6 (87)	1.130				
31.1 (88)	1.141				
31.7 (89)	1.150				

File E537898 Project 4791077436 Appendix Page 4 of X

ZINC COATING THICKNESS MEASUREMENT (X-RAY TEST METHOD) Clause: 6.3.1 (WET LOCATION):

METHOD

Representative specimens of the zinc coated 3/4 clip and 1 clip were examined on the x-ray coating thickness tester to determine the relative zinc plating thickness.

RESULTS

Ambient Relative Barometric Temperature, C 24.8 Humidity, % NA Pressure, mBar NA

The results of these tests are given in following Table.

3/4 clip

Sample	X-Ray Coating Thickness, mm (in)	X-Ray Coating Thickness, mm (in)	X-Ray Coating Thickness, mm (in)	Average Coating Thickness, mm (in)
1	0.00025	0.00022	0.00024	0.00024
2	0.00024	0.00024	0.00022	0.00023
3	0.00026	0.00023	0.00022	0.00024
4				
5				
6				

1 clip

Sample	X-Ray Coating Thickness, mm (in)	X-Ray Coating Thickness, mm (in)	X-Ray Coating Thickness, mm (in)	Average Coating Thickness, mm (in)
1	0.00018	0.00019	0.00016	0.00018
2.	0.00022	0.00021	0.00019	0.00021
3	0.00021	0.00019	0.00023	0.00021
4				
5	-			
6				

File E537898 Project 4791077436 Appendix Page 5 of X

- [x] The average thickness of the samples was less than 0.013 mm $(0.0005 \ \text{in.})$.
- [] The average thickness of the sample was greater than 0.013 mm (0.0005 in.).
- [x] The average thickness of the sample was less than 0.0038 mm (0.00015 in.).
- [] The average thickness of the sample was greater than 0.0038 mm (0.00015 in.).
- [] A visual inspection of the screws indicated the presence of a coating.

Note to lab Technician:

If the above test results statements are checked indicating less than the required value, then this will require that the referee test, the METALLIC COATING THICKNESS TEST described in CLAUSES 6.3.2-6.3.9, be conducted prior to closing this job by the lab.

File E537898 Project 4791077436 Appendix Page 6 of 14

ASSEMBLY TEST (HANGER):

METHOD

Clause: 6.1.1 and 6.2

[] Three [x] Six samples of a hanger were assembled to 152 mm (6 in.) lengths of ‡ cable [] conduit [x] tubing in accordance with the manufacturers installation instructions. [x] In the absence of installation instructions, the device was mounted rigidly to a test fixture and secured to [x] stud-grade pine, [] spruce wood [] steel stud. The hanger screw or bolt that was provided to secure conduit, cable, or tubing to a hardware device or was intended to secure a hanger by direct bearing to a flange, was tightened to the torque values in accordance with the following Table. Unless specified by manufacturer's instructions, a combination head was tested to the torque value in Column 2.

Unless indicated by manufacturer's instructions, a bolt head screw and nutcombination other than direct bearing, and not having provision for tightening with a screwdriver, was assembled using a torque of 18.1 N·m (160 lbf in). (Per handler, doesn't apply 2024-3-21)

[] The minimum and maximum diameter cable, as specified by the manufacturer, were tested.

File E537898 Project 4791077436 Appendix Page 7 of 14

ASSEMBLY TEST (HANGER): (CONT'D):

TABLE

Clause: 6.1.1 and 6.2

	Col. 1	Col. 2
	Screw tightened with a screwdriver	Bolt tightened with a Wrench
Screw/Bolt Size		
	N·m (lbf-in)	N·m (lbf-in)
No. 6	1.36 (12)	2
No. 8	2.26 (20)	
No. 10	3.96 (35)	3.96 (35)
1/4	3.96 (35)	4.52 (40)
5/16	3.96 (35)	6.78 (60)
3/8	3.96 (35)	6.78 (60)
7/16	3.96 (35)	10.17 (90)
1/2	3.96 (35)	14.13 (125)
9/16	3.96 (35)	20.34 (180)
5/8	3.96 (35)	28.25 (250)
3/4	3.96 (35)	45.20 (400)
7/8	=	75.15 (665)
1	- -	111.87 (990)

Note: These screwhead figures are shown as examples only, and are not intended to represent all possible configurations.

^{*} With reference to Clause 8.2.3, the screw head figures are not applicable.

File E537898 Project 4791077436 Appendix Page 8 of 14

ASSEMBLY TEST (HANGER) (CONT'D):

Clause: 6.1.1 and 6.2

RESULTS

Ambi Temp	Relative ature, C 23.4 Humidity, % NA	Barometric Pressure, mBar NA
[]	art of a hanger cracked.	
[x]	art of a hanger did not cracked.	
[]	art of a hanger broke.	
[x]	art of a hanger did not break.	
[]	he screw threads of the hanger stripped.	
[x]	he screw threads of the hanger did not strip.	
[] perce	he hanger did decrease the internal diameter .	of the tubing by more than 15
[x] 15 pe	he hanger did not decrease the internal diame ent.	ter of the tubing by more than
[] perce	he hanger did decrease the internal diameter.	of the conduit by more than 15
[] 15 pe	he hanger did not decrease the internal diame ent.	ter of the conduit by more than
[]	he appropriate size plug gauge would not pass	through the sample.
[x]	he appropriate size plug gauge did pass throu	gh each sample.
[]	he conduit was punctured.	
[x]	he conduit was not punctured.	
[]	here were sharp edges exposed as determined b	y visual inspection.
[x]	here were no sharp edges exposed as determine	d by visual inspection.
[]	he hanger was assembled with visible damage t	o the cable.
[x]	he hanger was assembled without visible damag	e to the cable/conduit.

File E537898 Project 4791077436 Appendix Page 9 of 14

ASSEMBLY TEST (HANGER) (CONT'D):

					Gauge		Tubing	Conduit
	Sampl		l	Screw	Passed	Gauge	Decreased	Decreases
	e	Sample	l	Threads	Throug	Passed	more than	more than
Trade	Numbe	Cracke	Sample	Strippe	h	Through	15	15
Size	r	d	Broke	d	Tubing	Conduit	percent	percent
3/4	1	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}	[Yes]	{Yes}
3/4	1	[No]	[No]	[No]	[No]	{No}	[No]	{No}
	2	[Yes]	[Yos]	[Yes]	[Yes]	[Yos]	[Yos]	[Yos]
	2	[No]	[No]	[No]	[Wo]	[No]	[No]	[No]
-	3	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]
	3	[No]	[No]	[No]	[No]	[No]	[No]	[No]
	4	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}
	4	[No]	[No]	[No]	[No]	[No]	[No]	{No}
	5	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	[¥es]	[Yes]
	J	[No]	[No]	[No]	[No]	[No]	[No]	{No}
	б	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}	[Yes]	{Yes}
		[No]	[No]	[No]	[No]	{No}	[No]	{No}
1	1	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}
1	+	[No]	[No]	[No]	[No]	[No]	[No]	{No}
	2	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}	[Yes]	{Yes}
	2	[No]	[No]	[No]	[No]	{No}	[No]	{No}
	3	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}	[Yes]	{Yes}
	3	[No]	[No]	[No]	[No]	{No}	[No]	{No}
	4	[Yes]	[Yos]	[Yes]	[Yes]	[Yos]	[Yos]	[Yes]
	4	[No]	[No]	[No]	[WO]	[No]	[No]	{No}
	5	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}
	5	[No]	[No]	[No]	[No]	[No]	[No]	[No]
	c	[Yes]	[Yes]	[Yes]	[Yes]	{Yes}	[Yes]	{Yes}
	6	[No]	[No]	[No]	[No]	[No]	[No]	{No}

Clause: 6.1.1 and 6.2

File E537898 Project 4791077436 Appendix Page 10 of 14

ASSEMBLY TEST (HANGER) (CONT'D):

Trade Size	Sample Number	Torque Applied, N·M (lb in.)	ID of {Tubing} {Conduit} Before Securement, mm (in)	ID of {Tubing} {Conduit} After Securement, mm (in)	Conduit was Punctured	Sharp Edges Exposed	Visible Damage to the Cable
3/4	1	35	.815	.815	[Yes] [No]	[Yes] [No]	{Yes} {No}
	2	35	.815	.815	[Yes] [No]	[Yes] [No]	{Yes} {No}
	3	35	.815	.815	[Yes] [No]	[Yes] [No]	{Yes} {No}
	4	35	.815	.815	[Yes] [No]	[Yes] [No]	{Yes} {No}
	5	35	.815	.815	[Yes] [No]	[Yes] [No]	[Yes] [No]
	6	35	.815	.815	[Yes] [No]	[Yes] [No]	{Yes} {No}
1	1	35	1.045	1.045	[Yes] [No]	[Yes] [No]	{Yes} {No}
	2	35	1.045	1.045	[Yes] [No]	[Yes] [No]	{Yes} {No}
	3	35	1.045	1.045	[Yes] [No]	[Yes] [No]	{Yes} {No}
	4	35	1.045	1.045	[Yes] [No]	[Yes] [No]	{Yes} {Ne}
	5	35	1.045	1.045	[Yes] [No]	[Yes] [No]	{Yes} {No}
	6	35	1.045	1.045	[Yes] [No]	[Yes] [No]	{Yes} {No}

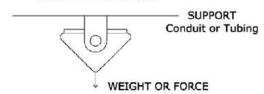
Clause: 6.1.1 and 6.2

File E537898 Project 4791077436 Appendix Page 11 of 14

PULL TEST (HANGER):

Clause: 7.2

METHOD


[x] The same samples from the Assembly Test were used for this test.

[] The same samples of a polymeric material from the Mold Stress Test, Assembly Test sequence were used for this test.

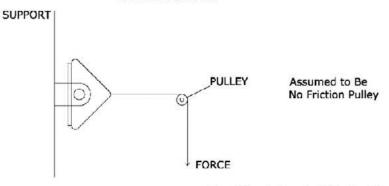

The device was installed on a [x] horizontal [] vertical surface and a pull force specified in the following table was applied normal to the surface for 5 minutes in a downward direction. Refer to Figure 1 below for conducting the Pull Test.

Figure 1:

HANGER HORIZONTAL

HANGER VERTICAL

Conduit or tubing is 6" (inches) in length. Any means can be used to secure weight to conduit or tubing and weight.

File E537898 Project 4791077436 Appendix Page 12 of 14

PULL TEST (HANGER) (CONT'D):

Clause: 7.2TABLE

Clause: 7.2

		Pull force/LOAD RATING						
		Electrical metallic tubing (EMT)*		(RMC), meta	metal conduit intermediate al conduit IMC) ^{a, c}	Rigid PVC conduit		
Trade size	(Metric designator)	Pull force (N)	Reference LOAD RATING (kg)	Pull force (N)	Reference LOAD RATING (kg)	Pull force (N)	Reference LOAD RATING (kg)	
1/2	(16)	667	23	667	23	667	23	
3/4	(21)	667	23	667	23	667	23	
1	(27)	845	27	845	27	712	23	
1- 1/4	(35)	1001	34	1001	34	778	25	
1- 1/2	(41)	1112	36	1112	36	801	27	
2	(53)	1334	45	1334	45	890	29	
2- 1/2	(63)	1668	57	1668	57	1112	36	
				2113 ^b	73 ^b			
3	(78)	2224	73	2224	75	1334	45	
				3892 ^b	134 ^b			
3- 1/2	(91)	2669	91	2668	91	1668	57	
				5004b	170b			
4	(103)	3114	150	3114	150	2002	68	
				6228b	213b			
5	(129)	-	-	4448	150	2669	91	
		Į.		8452 ^b	288 ^b			
6	(155)	2	4	4448	197	4003	136	
				8452b	404b			

^{*} Horizontal support intervals are limited to 3.05 m (10 ft) maximum.

^b In the United States, suitable for horizontal support intervals greater than 3.05 m (10 ft), not exceeding 3.7 m (12 ft) for trade size 1 (27), 4.3 m (14 ft) for trade sizes 1-1/4 (35) and 1-1/2 (41), 4.9 m (16 ft) for trade sizes 2 and 2-1/2 (63), and 6.10 m (20 ft) for trade size 3 and larger. In Canada, this does not apply.

 $^{^{\}mathrm{c}}$ In Canada, intermediate metal conduit is not recognized by the Canadian Electrical Code.

NOTE: This table includes SI (metric) units. See the following Table for equivalent values.

File E537898 Project 4791077436 Appendix Page 13 of 14

PULL TEST (HANGER) (CONT'D):

			Pull force/LOAD RATING											
		metall	ctrical lic tubing EMT)°	(RMC), metal	etal conduit intermediate l conduit	Rigid PVC conduit								
Trade size	(Metric designator)	Pull force (lbf)	Reference LOAD RATING (1b)	Pull force (lbf)	Reference LOAD RATING (1b)	Pull force (lbf)	Reference LOAD RATING (1b)							
1/2	(16)	150	50	150	50	150	50							
3/4	(21)	150	50	150	50	150	50							
1	(27)	190	60	190	60	160	50							
1- 1/4	(35)	225	75	225	75	175	55							
1- 1/2	(41)	250	80	250	80	180	60							
2	(53)	300	100	300	100	200	65							
2- 1/2	(63)	375	125	375	125	250	80							
		4		475 ^b	1.60 ^b									
3	(78)	500	160	500	165	300	100							
				875 ^b	295 ^b									
3- 1/2	(91)	600	200	600	200	375	125							
				1125b	375 ^b									
4	(103)	700	230	700	230	450	150							
				1400b	470 ^b									
5	(129)	-		1000	330	600	200							
				1900 ^b	635 ^b									
6	(155)		2	1000	435	900	300							
				1900b	8 9 0 p									

Clause: 7.2

^{*} Horizontal support intervals are limited to 3.05 m (10 ft) maximum.

b In the United States, suitable for horizontal support intervals greater than 3.05 m (10 ft), not exceeding 3.7 m (12 ft) for trade size 1 (27), 4.3 m (14 ft) for trade sizes 1-1/4 (35) and 1-1/2 (41), 4.9 m (16 ft) for trade sizes 2 and 2-1/2 (63), and 6.10 m (20 ft) for trade size 3 and larger. In Canada, this does not apply.

^c In Canada, intermediate metal conduit is not recognized by the Canadian Electrical Code.

File E537898 Project 4791077436 Appendix Page 14 of 14

PULL TEST (HANGER) (CONT'D):

TABLE

Clause: 7.2

						TARL	E	V-	
					n of I Vert				
			S	ample	Numb	er			
Catalog Numbers	Force lbf	1	2	3	4	5	6	Mounting Surface	Comments
3/4 clip	150	v	v	v	v	v	v	Stud- grade pine	
1 clip	190	v	v	v	v	v	v	Stud- grade pine	

RESULTS

	mbier emper		ure	e, C	23	. 4				Lve Lty,	olo Olo	N	Λ			cometr essure	ic , mBa	r	NA	
[x] Th	ie	[]	cab	le	[]	condui	t	[x] tı	ıbir	ng d	id r	emair	1 56	ecure	and i	nt	act.	
[] The] •]	cabl	e [1	conduit	I	1	tubi	.ng	did	not	rema	in	secur	e.			
[] The] =	1	cabl	e [1	conduit	1	1	tubi	.ng	did	not	rema	in	intac	et.			